Maximize your return with a complete guide to GitHub Copilot best practices.
Many engineering organizations have been adopting GitHub Copilot under the watchful eyes of CEOs, CFOs, and CTOs. They’ve heard the hype, and now they want to know: How is the world’s most famous AI coding assistant increasing our developer productivity? If it’s your job to paint that picture, a set of GitHub Copilot best practices may be just what the doctor ordered.
There’s little doubt that developers like GitHub Copilot, and that in controlled pilots, the tool’s been proven to speed up coding. But at the organizational level, many questions remain unanswered:
A new three-part recipe has emerged for navigating these questions and implementing GitHub Copilot. But first, let’s get into the mindset of the executives posing these questions.
Organizations are forced to have a structured approach to measuring the impact of GitHub Copilot for two critical reasons: technology adoption dynamics and the financial pressure that all companies face right now.
First, not everyone is an early adopter. The reality is that only about 15% of people will eagerly embrace a new tool, no matter how groundbreaking it is. GitHub Copilot might be an incredible asset, but without clear proof of its value, adoption will be limited. The key to increasing adoption lies in demonstrating ROI. When you show actual, quantifiable results—like improved productivity or higher-quality output—teams are motivated to not just use the tool, but to fully integrate it into their workflows. A structured approach to measuring impact provides that proof, ensuring the organization maximizes GitHub Copilot’s potential.
Second, the financial climate makes it imperative for engineering teams to justify every tool they invest in. Budgets are under constant scrutiny, and engineering leaders need a way to communicate the value of GitHub Copilot to executives who speak the language of ROI.
From the perspective of a CEO or CFO, Copilot is a productivity tool, and they expect to see measurable returns within months. Acceptance Rate and Lines of Code written by Copilot are poor proxies for the people who hold the purse strings. Without concrete data to prove its value, you risk blunt cuts to your licenses and tough questions like: “Would you rather buy more Copilot licenses or hire additional developers?” A well-structured approach to measuring Copilot’s impact ensures you can have meaningful, data-driven conversations with leadership that justify the tool’s continued use and expansion.
Many enterprises have adopted the field-proven Launch-Learn-Run framework for their Copilot journey. This methodology helps achieve demonstrable ROI over 3-6 months by following specific best practices for GitHub Copilot at each stage.
Here's how the process unfolds:
Global enterprises trust Faros AI to accelerate their engineering operations. Give us 30 minutes of your time and see it for yourself.