Want to learn more about Faros AI?

Fill out this form to speak to a product expert.

I'm interested in...
Loading calendar...
An illustration of a lighthouse in the sea

Thank you!

A Faros AI expert will reach out to schedule a time to talk.
P.S. If you don't see it within one business day, please check your spam folder.
Oops! Something went wrong while submitting the form.
Submitting...
An illustration of a lighthouse in the sea

Thank you!

A Faros AI expert will reach out to schedule a time to talk.
P.S. If you don't see it within one business day, please check your spam folder.
Oops! Something went wrong while submitting the form.

AI Productivity Checklist for Engineering Teams

A simple checklist can help engineering managers achieve net positive gains in team productivity, lead time, and quality.

Thierry Donneau-Golencer
Thierry Donneau-Golencer
A checklist to measure the impact of AI copilots on developer productivity
5
min read
Browse Chapters
Share
July 17, 2023

AI Productivity Checklist for Engineering Teams Using ChatGPT and Coding  Copilots

Github Copilot has been activated by more than one million developers in over 20,000 organizations, generating a staggering three billion accepted lines of code. So it’s likely your team is using it.

While your developers may be thrilled with the shortcuts and time savings, as their manager do you know the net impact AI is having on your KPIs for team productivity, quality, and lead time?

Do you know how to have a conversation with your team about using AI for a net positive outcome?

We've created a checklist on how to have those conversations and what you should be tracking.

But, first...

Make sure you know how engineers are using AI in coding

Several enterprises have been monitoring the impact of rolling out new tools like Github Copilot and developers' unofficial adoption of chatGPT.

An initial study of enterprise usage shows the potential for tremendous time savings:

  • Copilot Code Autocomplete is widely adopted for writing boilerplate code, skeleton code, code comments, and tests. It can save developers up to 20% coding time.
  • Copilot Code Suggestions are deemed less valuable and helped in only 25% of the cases. For this use case, developers prefer chatGPT over Copilot to create code snippets from specs, translate from one programming language to another, or as a tutor for debugging. Estimated savings are over 1hr per day per developer.

But fascinatingly, Lead Time to Production has yet to improve despite personal productivity gains. Even with faster dev times, the time spent in code review, merging, and testing is still long.

That's where the AI Productivity Checklist comes in: To ensure AI helps your team realize overall productivity improvements in speed and velocity.

The AI Productivity Checklist

Given that you want to see net gains in lead time and productivity for the team, below is a checklist to guide your conversations with the team and ensure you monitor important KPIs for adverse effects.

The checklist has two parts — questions to ask your developers and metrics you should track as a manager.

Combined, the checklist will help create awareness around the impacts of introducing sub-optimal code generated by AI. You'll be able to ensure the efficiency gains for the individual aren’t dwarfed by the negative impacts on the team, your customers, and the business.

Here you go:

1) Questions to ask your developers:

☑ Do you have good test coverage for generated code?

☑ Do you have a way to assess the code quality of generated code?

☑ Are you able to identify potential security and compliance issues introduced by generated code?

☑ Is documentation for generated code clear and sufficient?

2) Metrics to track as a manager:

☑ Code Review Cycle Time: Are code reviews taking longer?

☑ QA Cycle Time: Is there an uptick in bugs and incidents? Is more time being spent on rework?

☑ Change Failure Rate: Are failures increasing?

☑ MTTR: Is incident resolution getting slower?

☑ Lead Time: Has overall lead time to production gotten faster or slower?

Need metrics?

Metrics that analyze the impact of new technology and practices on engineering processes and performance have become business-critical.

Faros AI specializes in visibility and analytics across any environment and stack. We know all about non-standard tool implementations, highly customized pipelines, homegrown systems, and proprietary data sources.

Talk to us about our extensible, customizable software engineering intelligence platform.

Thierry Donneau-Golencer

Thierry Donneau-Golencer

Thierry is Head of Product at Faros AI, where he builds solutions to empower teams and drive engineering excellence. His previous roles include AI research (Stanford Research Institute), an AI startup (Tempo AI, acquired by Salesforce), and large-scale business AI (Salesforce Einstein AI).

Connect
AI Is Everywhere. Impact Isn’t.
75% of engineers use AI tools—yet most organizations see no measurable performance gains.

Read the report to uncover what’s holding teams back—and how to fix it fast.
Discover the Engineering Productivity Handbook
How to build a high-impact program that drives real results.

What to measure and why it matters.

And the 5 critical practices that turn data into impact.
Want to learn more about Faros AI?

Fill out this form and an expert will reach out to schedule time to talk.

Loading calendar...
An illustration of a lighthouse in the sea

Thank you!

A Faros AI expert will reach out to schedule a time to talk.
P.S. If you don't see it within one business day, please check your spam folder.
Oops! Something went wrong while submitting the form.

More articles for you

Editor's Pick
DevProd
Guides
12
MIN READ

What is Software Engineering Intelligence and Why Does it Matter in 2025?

A practical guide to software engineering intelligence: what it is, who uses it, key metrics, evaluation criteria, platform deployment pitfalls, and more.
October 25, 2025
Editor's Pick
Guides
DevProd
15
MIN READ

Top 6 GetDX Alternatives: Finding the Right Engineering Intelligence Platform for Your Team

Picking an engineering intelligence platform is context-specific. While Faros AI is the best GetDX alternative for enterprises, other tools may be more suitable for SMBs. Use this guide to evaluate GetDX alternatives.
October 16, 2025
Editor's Pick
AI
Guides
12
MIN READ

Enterprise AI Coding Assistant Adoption: Scaling to Thousands

Complete enterprise playbook for scaling AI coding assistants to thousands of engineers. Based on real telemetry from 10,000+ developers. 15,324% ROI.
September 17, 2025

See what Faros AI can do for you!

Global enterprises trust Faros AI to accelerate their engineering operations. Give us 30 minutes of your time and see it for yourself.